In the past few years, Artificial Intelligence (AI) has garnered attention from various industries including financial services (FS). AI has made a positive impact in financial services by enhancing productivity and improving risk management. While AI can offer efficient solutions, it has the potential to bring unintended consequences. One such consequence is the pronounced effect of AI-related unfairness and attendant fairness-related harms. These fairness-related harms could involve differential treatment of individuals; for example, unfairly denying a loan to certain individuals or groups of individuals. In this paper, we focus on identifying and mitigating individual unfairness and leveraging some of the recently published techniques in this domain, especially as applicable to the credit adjudication use case. We also investigate the extent to which techniques for achieving individual fairness are effective at achieving group fairness. Our main contribution in this work is functionalizing a two-step training process which involves learning a fair similarity metric from a group sense using a small portion of the raw data and training an individually "fair" classifier using the rest of the data where the sensitive features are excluded. The key characteristic of this two-step technique is related to its flexibility, i.e., the fair metric obtained in the first step can be used with any other individual fairness algorithms in the second step. Furthermore, we developed a second metric (distinct from the fair similarity metric) to determine how fairly a model is treating similar individuals. We use this metric to compare a "fair" model against its baseline model in terms of their individual fairness value. Finally, some experimental results corresponding to the individual unfairness mitigation techniques are presented.
translated by 谷歌翻译
视频框架插值〜(VFI)算法近年来由于数据驱动算法及其实现的前所未有的进展,近年来有了显着改善。最近的研究引入了高级运动估计或新颖的扭曲方法,以解决具有挑战性的VFI方案。但是,没有发表的VFI作品认为插值误差(IE)的空间不均匀特征。这项工作引入了这样的解决方案。通过密切检查光流与IE之间的相关性,本文提出了新的错误预测指标,该指标将中间框架分为与不同IE水平相对应的不同区域。它基于IE驱动的分割,并通过使用新颖的错误控制损耗函数,引入了一组空间自适应插值单元的合奏,该单元逐步处理并集成了分段区域。这种空间合奏会产生有效且具有诱人的VFI解决方案。对流行视频插值基准测试的广泛实验表明,所提出的解决方案在当前兴趣的应用中优于当前最新(SOTA)。
translated by 谷歌翻译
这项研究采用无限脉冲响应(IIR)图神经网络(GNN),有效地对智能网格数据的固有图形网络结构进行建模,以解决网络攻击本地化问题。首先,我们通过数值分析有限脉冲响应(FIR)和IIR图过滤器(GFS)的经验频率响应,以近似理想的光谱响应。我们表明,对于相同的滤波器顺序,IIR GF可以更好地近似所需的光谱响应,并且由于其合理类型的滤镜响应,它们也与较低阶GF的近似值相同。其次,我们提出了一个IIR GNN模型,以有效预测总线上的网络攻击的存在。最后,我们在样本(SW)和BUS(BW)水平的各种网络攻击下评估了模型,并将结果与​​现有架构进行比较。经过实验验证的是,所提出的模型的表现分别优于最先进的FIR GNN模型,分别在SW和BW定位方面分别优于9.2%和14%。
translated by 谷歌翻译
我们考虑了分布式随机优化问题,其中$ n $代理想要最大程度地减少代理本地函数总和给出的全局函数,并专注于当代理的局部函数在非i.i.i.d上定义时,专注于异质设置。数据集。我们研究本地SGD方法,在该方法中,代理执行许多局部随机梯度步骤,并偶尔与中央节点进行通信以改善其本地优化任务。我们分析了本地步骤对局部SGD的收敛速率和通信复杂性的影响。特别是,我们允许在$ i $ th的通信回合($ h_i $)期间允许在所有通信回合中进行固定数量的本地步骤。我们的主要贡献是将本地SGD的收敛速率表征为$ \ {h_i \} _ {i = 1}^r $在强烈凸,convex和nonconvex local函数下的函数,其中$ r $是沟通总数。基于此特征,我们在序列$ \ {h_i \} _ {i = 1}^r $上提供足够的条件,使得本地SGD可以相对于工人数量实现线性加速。此外,我们提出了一种新的沟通策略,将本地步骤提高,优于现有的沟通策略,以突出局部功能。另一方面,对于凸和非凸局局功能,我们认为固定的本地步骤是本地SGD的最佳通信策略,并恢复了最新的收敛速率结果。最后,我们通过广泛的数值实验证明我们的理论结果是合理的。
translated by 谷歌翻译
我们考虑了一个$ n $ - 玩家随机游戏的子类,其中玩家在通过收益功能耦合时拥有自己的内部状态/动作空间。假定玩家的内部链是由独立过渡概率驱动的。此外,玩家只能收到其回报的实现,而不是实际功能,并且无法观察彼此的状态/行动。根据一些关于收益功能结构的假设,我们基于双重平均和双镜下降开发有效的学习算法,该算法几乎可以肯定地融合或预期$ \ epsilon $ nash $ nash平衡策略。特别是,我们根据游戏参数的多项式划分的迭代数量得出了上限,以实现$ \ epsilon $ -NASH平衡策略。除了马尔可夫潜在的游戏和线性季节随机游戏外,这项工作还提供了$ n $ - 玩家随机游戏的另一个子类,这些游戏可证明可以允许多项式学习算法找到其$ \ epsilon $ nash平衡策略。
translated by 谷歌翻译
作为一种高度复杂和集成的网络物理系统,现代电网暴露于网络攻击。假数据注入攻击(FDIAS),具体地,通过针对测量数据的完整性来表示对智能电网的主要类别威胁。虽然已经提出了各种解决方案来检测那些网络攻击,但绝大多数作品忽略了电网测量的固有图结构,并仅验证了其检测器,仅针对小于几百辆公共汽车的小型测试系统。为了更好地利用智能电网测量的空间相关性,本文提出了使用Chebyshev Graph卷积网络(CGCN)的大规模交流电网中的网络内人检测深度学习模型。通过降低光谱滤波器的复杂性并使它们本地化,CGCN提供了一种快速高效的卷积操作,以模拟图形结构智能电网数据。我们在数值上验证所提出的CGCN的探测器在7.86以7.86以7.67以带有2848辆总线的大型电网的误报率的7.86以7.86的误报。所值得注意的是,所提出的方法检测为2848辆总线系统的4毫秒下的网络攻击,这使其成为大型系统中的网络内攻击的良好候选者。
translated by 谷歌翻译
我们考虑一个动态上校的Blotto游戏(CBG),其中一个玩家是学习者,并且有限的部队(预算)在有限的时间范围内分配。在每个阶段,学习者策略性地根据过去的观察确定战地中的预算分布。另一个玩家是对手,他们从一些固定的未知分发中随机选择预算分配策略。学习者的目标是最大限度地减少其遗憾,这是通过遵循学习算法的最佳混合策略的收益和实现的收益之间的差异。在组合强盗和带背包的骨架的框架下分析动态CBG。首先将动态CBG与预算约束转换为图表上的路径规划问题。然后,我们为学习者设计了一个有效的动态策略,用于在路径规划图上使用组合强盗算法边缘作为另一算法Lagrangebwk的子程序。结果表明,在拟议的政策下,学习者的遗憾是在时间上限的术语中的临时概要,以时间为地平线$ T $和多项式相对于其他参数。
translated by 谷歌翻译